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4

Maximum Likelihood Missing 
Data Handling

4.1 CHAPTER OVERVIEW

Having established some basic estimation principles with complete data, this chapter de-
scribes maximum likelihood missing data handling (the literature sometimes refers to this 
procedure as full information maximum likelihood and direct maximum likelihood). The 
idea of using maximum likelihood to deal with missing data is an old one that dates back 
more than 50 years (Anderson, 1957; Edgett, 1956; Hartley, 1958; Lord, 1955). These early 
maximum likelihood solutions were limited in scope and had relatively few practical applica-
tions (e.g., bivariate normal data with a single incomplete variable). Many of the important 
breakthroughs came in the 1970s when methodologists developed the underpinnings of 
modern missing data handling techniques (Beale & Little, 1975; Finkbeiner, 1979; Demp-
ster, Laird, & Rubin, 1977; Hartley & Hocking, 1971; Orchard & Woodbury, 1972). How-
ever, maximum likelihood routines have only recently become widely available in statistical 
software packages.

Recall from Chapter 3 that maximum likelihood estimation repeatedly auditions differ-
ent combinations of population parameter values until it identifi es the particular constellation 
of values that produces the highest log-likelihood value (i.e., the best fi t to the data). Con-
ceptually, the estimation process is the same with or without missing data. However, miss-
ing data introduce some additional nuances that are not relevant for complete-data analyses. 
For one, incomplete data records require a slight alteration to the individual log-likelihood 
computations to accommodate the fact that individuals no longer have the same number of 
observed data points. Missing data also necessitate a subtle, but important, adjustment to 
the standard error computations. Finally, with few exceptions, missing data analyses require 
iterative optimization algorithms, even for very simple estimation problems. This chapter 
describes one such algorithm that is particularly important for missing data analyses, the ex-
pectation maximization (EM) algorithm.
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Methodologists currently regard maximum likelihood as a state-of-the-art missing data 
technique (Schafer & Graham, 2002) because it yields unbiased parameter estimates under 
a missing at random (MAR) mechanism. From a practical standpoint, this means that maxi-
mum likelihood will produce accurate parameter estimates in situations where traditional 
approaches fail. Even when the data are missing completely at random (MCAR), maximum 
likelihood will still be superior to traditional techniques (e.g., deletion methods) because it 
maximizes statistical power by borrowing information from the observed data. Despite these 
desirable properties, maximum likelihood estimation is not a perfect solution and will yield 
biased parameter estimates under a missing not at random (MNAR) mechanism. However, 
this bias tends to be isolated to a subset of the analysis model parameters, whereas tradi-
tional techniques are more apt to propagate bias throughout the entire model. Consequently, 
maximum likelihood estimation is virtually always a better option than the traditional meth-
ods from Chapter 2. The fact that maximum likelihood is easy to implement and is widely 
available in statistical software packages makes it all the more attractive.

I use the small data set in Table 4.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants who score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are MAR because they are systematically missing as a 
function of IQ scores (i.e., individuals in the lower half of the IQ distribution were never 

TABLE 4.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94 3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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hired and thus have no performance rating). In addition, I randomly deleted three of the 
well-being scores in order to mimic an MCAR mechanism (e.g., the human resources depart-
ment inadvertently loses an applicant’s well-being questionnaire). This data set is too small 
for a serious application of maximum likelihood estimation, but it is useful for illustrating the 
basic mechanics of the procedure.

4.2 THE MISSING DATA LOG-LIKELIHOOD

Recall from Chapter 3 that the starting point for a maximum likelihood analysis is to specify 
a distribution for the population data. To be consistent with the previous chapter, I describe 
maximum likelihood missing data handling in the context of multivariate normal data. The 
mathematical machinery behind maximum likelihood relies on a probability density func-
tion that describes the shape of the multivariate normal distribution. Substituting a score 
vector and a set of population parameter values into the density function returns a likelihood 
value that quantifi es the relative probability of drawing the scores from a normally distrib-
uted population. Because likelihood values tend to be very small numbers that are prone to 
rounding error, it is more typical to work with the natural logarithm of the likelihood values 
(i.e., the log-likelihood). Rather than rehash the computational details of the likelihood val-
ues, I use the individual log-likelihood as the starting point for this chapter. Readers who are 
interested in more information on the likelihood can review Chapter 3.

Assuming a multivariate normal distribution for the population, note that the complete-
data log-likelihood for a single case is

 k 1 1 logLi = – —log(2π) – — log|!| – —(Yi–")T!–1(Yi–") (4.1)
 2 2 2

where k is the number of variables, Yi is the score vector for case i, and " and ! are the popu-
lation mean vector and covariance matrix, respectively. The key portion of the formula is the 
Mahalanobis distance value, (Yi–")T!–1(Yi–"). Mahalanobis distance is a squared z score 
that quantifi es the standardized distance between an individual’s data points and the center 
of the multivariate normal distribution. This value largely determines the magnitude of the 
log-likelihood, such that small deviations between the score vector and the mean vector pro-
duce large (i.e., less negative) log-likelihood values, whereas large deviations yield small like-
lihoods. In simple terms, Equation 4.1 quantifi es the relative probability that an individual’s 
scores originate from a multivariate normal population with a particular mean vector and co-
variance matrix.

With missing data, the log-likelihood for case i is

 ki 1 1 logLi = – —log(2π) – — log|!i| – —(Yi–"i)T!i
–1(Yi–"i) (4.2)

 2 2 2

where ki is the number of complete data points for that case and the remaining terms have 
the same meaning as they did in Equation 4.1. At fi rst glance, the two log-likelihood formulas 
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look identical, except for the fact that the missing data log-likelihood has an i subscript next 
to the parameter matrices. This subscript is important and denotes the possibility that the 
size and the contents of the matrices can vary across individuals, such that the log-likelihood 
computations for case i depend only on the variables and the parameters for which that case 
has complete data.

To illustrate the missing data log-likelihood, suppose that the company wants to use the 
data in Table 4.1 to estimate the mean vector and the covariance matrix. Estimating these 
parameters is relatively straightforward with complete data but requires an iterative optimi-
zation algorithm when some of the data are missing. For the sake of demonstration, suppose 
that the population parameters at a particular iteration are as follows:

 µ̂IQ 100.00
 "̂ = [ µ̂JP ] = [ 10.23] µ̂WB 10.27

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB 189.60 22.31 12.21

 !̂ = [ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ] = [  22.31 8.68  5.61] σ̂WB,IQ σ̂WB,JP σ̂2

WB 12.21 5.60 11.04

The log-likelihood computations for each individual depend only on the variables and 
the parameters for which a case has complete data. This implies that the log-likelihood for-
mula looks slightly different for each missing data pattern. Returning to the data set in Table 
4.1, observe four unique missing data patterns: (1) cases with only IQ scores, (2) cases with 
IQ and well-being scores, (3) cases with IQ and job performance scores, and (4) cases with 
complete data on all three variables. To begin, consider the employee with an IQ score of 
105, a job performance rating of 10, and a well-being score of 12. Because this individual has 
complete data, the log-likelihood computations involve every element in the mean vector and 
the covariance matrix, as follows:

 
ki 1

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB

logLi = – —log(2π) – —log| σ̂JP,IQ   σ̂2
JP  σ̂JP,WB | 2 2 σ̂WB,IQ σ̂WB,JP σ̂2

WB

 
1

 IQi µ̂IQ σ̂2
IQ σ̂IQ,JP σ̂IQ,WB IQi µ̂IQ

 – —([ JPi ] – [ µ̂JP ])
T

[ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ]

–1

([ JPi ] – [ µ̂JP ]) 2 WBi µ̂WB σ̂WB,IQ σ̂WB,JP σ̂2
WB WBi µ̂WB

 
3 1

 189.60 22.31 12.21
 = – —log(2π) – —log| 22.31  8.68  5.61| 2 2 12.21 5.60 11.04

  
1

 105 100.00 189.60 22.31 12.21 105 100.00
 – —([ 10] – [ 10.23])

T

[ 22.31  8.68  5.61]
–1

([ 10] – [ 10.23]) = –7.66
  2 12 10.27 12.21 5.60 11.04 12 10.27
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Consistent with complete-data maximum likelihood estimation, –7.66 is the relative prob-
ability of drawing this set of three scores from a multivariate normal distribution with the 
previous parameter values. The log-likelihood computations for the remaining complete cases 
follow the same procedure, but use different score values.

Next, consider the subsample of cases with IQ and well-being scores. These individuals 
have missing job performance ratings, so it is no longer possible to use all three variables to 
compute the log-likelihood. The missing data log-likelihood accommodates this situation by 
ignoring the parameters that correspond to the missing job performance ratings. For exam-
ple, consider the individual with IQ and well-being scores of 94 and 3, respectively. Eliminat-
ing the job performance parameters from the mean vector and the covariance matrix leaves 
the following subset of parameter estimates.

 
"̂i =

 [ µ̂IQ ] = [100.00] µ̂WB 10.27

 
!̂i =

 [ σ̂2
IQ

 
 σ̂IQ,WB] = [189.60 12.21] σ̂WB,IQ σ̂2

WB 12.21 11.04

The log-likelihood computations use only these parameter values, as follows:

 ki 1 σ̂2
IQ σ̂IQ,WB logLi = – —log(2π) – —log|       | 2 2 σ̂WB,IQ σ̂2

WB

 1 IQi µ̂IQ σ̂2
IQ σ̂IQ,WB IQi µ̂IQ – —([   ]– [   ])T[      ]–1([   ]– [   ])  2 WBi µ̂WB σ̂WB,IQ σ̂2

WB WBi µ̂WB

 2 1 189.60 12.21
 = – —log(2π) – —log|       | 2 2 12.21 11.04

 1 94 100.00 189.60 12.21 94 100.00
 – —([  ] – [   ])T[       ]–1([  ] – [   ]) = –8.03
 2 3 10.27 12.21 11.04 3 10.27

Notice that the log-likelihood equation no longer contains any reference to the job perfor-
mance variable. Thus, the resulting log-likelihood value is the relative probability of drawing 
the two scores from a bivariate normal distribution with a mean vector and covariance matrix 
equal to "̂i and !̂i, respectively. Again, the log-likelihood computations for the remaining cases 
that share this missing data pattern follow the same approach.

As a fi nal example, consider the subsample of cases that have data on the IQ variable 
only. Consistent with the previous example, the log-likelihood computations ignore the pa-
rameters that correspond to the missing variables, leaving only the IQ parameters.

 "̂i = [µ̂IQ] = [100.00]

 !̂i = [σ̂2
IQ] = [189.60]
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To illustrate, the log-likelihood for the employee with an IQ score of 87 is as follows:

 ki 1 1
 logLi = – —log(2π) – —log|σ̂2

IQ| – —(IQi – µ̂IQ)T(σ̂2
IQ)–1(IQi – µ̂IQ)

 2 2 2

 1 1 1
 = – —log(2π) – —log|189.60| – —(87 – 100)T(189.60)–1(87 – 100)
 2 2 2

 = –3.99

The log-likelihood value is now the relative probability of drawing an IQ score of 87 from a 
univariate normal distribution with a mean of 100 and a variance of 189.60.

Table 4.2 shows the log-likelihood values for all 20 employees. Consistent with com-
plete-data estimation, the sample log-likelihood is the sum of the individual log-likelihood 
values. For example, summing the log-likelihood values in Table 4.2 gives logL = –146.443. 
Despite the missing values, the sample log-likelihood is still a summary measure that quanti-
fi es the joint probability of drawing the observed data from a normally distributed population 
with a particular mean vector and covariance matrix (e.g., the previous estimates of " and 
!). Furthermore, the estimation process follows the same logic as Chapter 3. Conceptually, 
an iterative optimization algorithm repeats the log-likelihood computations many times, each 
time with different estimates of the population parameters. Each unique combination of pa-
rameter estimates yields a different log-likelihood value. The goal of estimation is to identify 

TABLE 4.2. Individual Log-Likelihood Values

 Psychological Job
IQ well-being performance logLi

 78 13 — –7.73904
 84  9 — –6.30206
 84 10 — –6.32745
 85 10 — –6.24113
 87 — — –3.98707
 91  3 — –8.02047
 92 12 — –6.03874
 94  3 — –8.02968
 94 13 — –6.19267
 96 — — –3.58359
 99  6  7 –8.37010
105 12 10 –7.66375
105 14 11 –8.07781
106 10 15 –9.54606
108 — 10 –5.64284
112 10 10 –7.88229
113 14 12 –8.23350
115 14 14 –8.33434
118 12 16 –9.49084
134 11 12 –10.73921
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the particular constellation of estimates that produce the highest log-likelihood and thus the 
best fi t to the data. Importantly, the estimation algorithm does not need to impute or replace 
the missing values. Rather, it uses all of the available data to estimate the parameters and the 
standard errors.

As an aside, maximum likelihood missing data handling is far more fl exible than my 
previous examples imply because the mean vector and the covariance matrix can be func-
tions of other model parameters. For example, a multiple regression analysis expresses the 
mean vector and the covariance matrix as a function of the regression coeffi cients and a re-
sidual variance estimate. Similarly, a confi rmatory factor analysis model defi nes ! as a model-
implied covariance matrix that depends on factor loadings, residual variances, and the latent 
variable covariance matrix. It defi nes " as a model-implied mean vector, the values of which 
depend on factor means, factor loadings, and measurement intercepts (Bollen, 1989). I illus-
trate some of these more advanced applications of maximum likelihood estimation later in 
the chapter.

4.3 HOW DO THE INCOMPLETE DATA RECORDS 
IMPROVE ESTIMATION?

Using all of the available data to estimate the parameters is an intuitively appealing approach, 
but it is not necessarily obvious why including the incomplete data records improves the ac-
curacy of the resulting parameter estimates. A bivariate analysis in which one of the variables 
has missing data may provide deeper insight into the estimation process. Returning to the 
data in Table 4.1, suppose that the company wants to estimate the IQ and job performance 
means. Table 4.3 shows the maximum likelihood estimates along with those of listwise dele-
tion. By virtue of the selection process, listwise deletion discards the entire lower half of the 
IQ distribution (the company only hires applicants with high IQ scores, so low-scoring ap-
plicants do not contribute to the analysis). Because IQ scores and job performance ratings 
are positively correlated, listwise deletion also excludes cases from the lower tail of the job 
performance distribution. Not surprisingly, the remaining cases are unrepresentative of the 
hypothetically complete data set because they have systematically higher scores on both vari-
ables. Consequently, the listwise deletion mean estimates are too high. In contrast, the maxi-
mum likelihood estimates are relatively similar to those of the complete data. An analysis 
based on a sample size of 20 does not provide compelling evidence in favor of maximum 

TABLE 4.3. IQ and Job Performance 
Means from the Employee Selection Data

Estimator µ̂IP µ̂JP

Complete data 100.00 10.35
Maximum likelihood 100.00 10.28
Listwise deletion 111.50 11.70

Note. The complete data estimates are from the data in 
Table 3.1.
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likelihood estimation, but the estimates in Table 4.3 are consistent with Rubin’s (1976) theo-
retical predictions for an MAR mechanism.

The log-likelihood equation can provide some insight into the differences between the 
maximum likelihood and listwise deletion parameter estimates. With missing data, the indi-
vidual log-likelihood computations depend only on the variables and the parameter estimates 
for which a case has data. Because the bivariate analysis has just two missing data patterns 
(i.e., cases with complete data and cases with data on IQ only), there are two log-likelihood 
formulas. The individual log-likelihood equation for the subsample of employees with com-
plete data is

 ki 1 σ2
IQ σJP,IQ logLi = – —log(2π) – —log|       | 2 2 σJP,IQ σ2

JP (4.3)

 1 IQi µIQ σ2
IQ σJP,IQ IQi µIQ – —([  ]– [  ])T[     ]–1([   ]– [  ])  2 JPi µJP σJP,IQ σ2

JP WBi µJP

and eliminating the job performance parameters gives the individual log-likelihood equation 
for the applicants with incomplete data, as follows:

 ki 1 (IQi – µIQ)2

 logLi = – —log(2π) – —log|σ2
IQ| – ——–—— (4.4)

 2 2 2σ2
IQ

Finally, summing the previous equations across the entire sample gives the sample log-
likelihood

 ki 1 1
 logL = {–nC(—log[2π] – —log|!|) – — ∑

i

nC

=1
(Yi–")!–1(Yi–")} 2 2 2

 ki 1 1
 –nM(—log[2π] – —log|σ2

IQ|) – —–– ∑
i=

nM

1
(IQi – µIQ)2 (4.5)

 2 2 2σ2
IQ

 = {logLComplete} + logLIncomplete

where nC is the number of complete cases, and nM is the number of incomplete cases. To 
make the equation more compact, I do not display the individual matrix elements from 
Equation 4.3 (e.g., " replaces the vector in Equation 4.3 that contains µIQ and µJP).

Equation 4.5 is useful because it partitions the sample log-likelihood into two compo-
nents. The bracketed terms refl ect the contribution of the complete cases to the sample log-
likelihood, and remaining terms contain the additional information from the incomplete data 
records. A maximum likelihood analysis based on the 10 complete cases (i.e., an analysis 
that uses only the bracketed terms) would produce the listwise estimates in Table 4.3. This 
implies that the incomplete data records are solely responsible for differences between the 
listwise deletion and maximum likelihood parameter estimates. In some sense, the portion of 
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the log-likelihood equation for the incomplete cases serves as a correction factor that steers 
the estimator to a more accurate set of parameter estimates.

The fact that maximum likelihood better estimates the IQ mean should come as no 
surprise because the variable is complete. The accuracy of the job performance mean is less 
intuitive when you consider that the incomplete cases have no job performance ratings. To 
illustrate how the incomplete data records affect estimation, Table 4.4 shows the sample log-
likelihood for different combinations of the IQ and job performance means. For simplicity, I 
limited the IQ estimates to values of 100.00 and 111.50 (these are the maximum likelihood 
and listwise deletion estimates, respectively). The column labeled logLComplete contains the 
sample log-likelihood values from a listwise deletion analysis (i.e., maximum likelihood esti-
mation based only on the bracketed terms in Equation 4.5); the column labeled logLIncomplete 
shows the log-likelihood contribution for the incomplete data records; and the logL column 
gives the sample log-likelihood values for maximum likelihood missing data handling (i.e., 
the sum of logLComplete and logLIncomplete).

Recall that the goal of estimation is to identify the constellation of parameter values that 
produces the highest log-likelihood and thus the best fi t to the data. As seen in the logLComplete 
column, a listwise deletion analysis would produce estimates of µ̂IQ = 111.50 and µ̂JP = 11.75 
because this combination of parameter values has the highest (i.e., least negative) log-likeli-
hood value. (Had I used smaller increments for the job performance mean, these estimates 
would exactly match the listwise estimates in Table 4.3.) Next, the logLIncomplete column gives 
the contribution of the 10 incomplete cases to the sample log-likelihood. Because these ap-
plicants do not have job performance ratings, the log-likelihood values are constant across 
different estimates of the job performance mean (i.e., Equation 4.4 depends only on the IQ 
parameters). However, the incomplete data records do carry information about the IQ mean, 
and the log-likelihood values suggest that µIQ = 100.00 is more plausible than µIQ = 111.50 
(i.e., the log-likelihood for µIQ = 100.00 is higher than that of µIQ = 111.50). Finally, the logL 
column gives the sample log-likelihood values for maximum likelihood missing data han-
dling. As you can see, µIQ = 100.00 and µJP = 10.25 provide the best fi t to the data because 
this combination of parameter values has the highest log-likelihood.

Mathematically, the goal of maximum likelihood estimation is to identify the parameter 
values that minimize the standardized distances between the data points and the center of a 
multivariate normal distribution. Whenever the estimation process involves a set of model 
parameters, fi ne-tuning one estimate can lead to changes in the other estimates. This is pre-
cisely what happened in the bivariate analysis example. Specifi cally, the log-likelihood values 
in the logLIncomplete column of Table 4.4 strongly favor a lower value for the IQ mean. Includ-
ing these incomplete data records in the analysis therefore pulls the IQ mean down to a value 
that is identical to that of the complete data. Higher values for the job performance mean 
(e.g., µJP = 11.75) are an unlikely match for an IQ mean of 100, so the downward adjustment 
to the IQ average effectively steers the estimator toward a job performance mean that more 
closely matches that of the complete data. In effect, maximum likelihood estimation improves 
the accuracy of the parameter estimates by “borrowing” information from the observed data 
(e.g., the IQ scores), some of which is contained in the incomplete data records. Although 
it is diffi cult to illustrate with equations, the same process applies to complex multivariate 
analyses with general missing data patterns.
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4.4 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

The preceding bivariate analysis is useful for illustration purposes, but it does not offer 
compelling evidence about the performance of maximum likelihood missing data handling. 
To better illustrate the properties of maximum likelihood estimation, I conducted a series 
of Monte Carlo computer simulations. The simulation programs generated 1,000 samples of 
N = 250 from a population model that mimicked the IQ and job performance data in Table 
4.1. The fi rst simulation created MCAR data by randomly deleting 50% of the job performance 
ratings. The second simulation modeled MAR data and eliminated job performance scores 
for the cases in the lower half of the IQ distribution. The fi nal simulation generated MNAR 
data by deleting the job performance scores for the cases in the lower half of the job perfor-
mance distribution. After generating each data set, the simulation programs used maximum 
likelihood missing data handling to estimate the mean vector and the covariance matrix.

Table 4.5 shows the average parameter estimates from the simulations and uses bold 
typeface to highlight severely biased estimates. For comparison purposes, the table also shows 
the corresponding estimates from listwise deletion. As seen in the table, maximum likelihood 
and listwise deletion produced unbiased estimates in the MCAR simulation, and both sets of 
estimates were virtually identical. Although not shown in the table, the listwise deletion 
standard errors were generally 7 to 40% larger than those of maximum likelihood estimation. 
Not surprisingly, this translates into a substantial power advantage for maximum likelihood. 
The MAR simulation produced dramatic differences between the two missing data techniques, 

TABLE 4.4. Sample Log-Likelihood Values for Different 
Combinations of the IQ and Job Performance Means

 Log-likelihood

µIQ µJP logLComplete logLIncomplete logL

100.00 10.00 –63.754 –39.694 –103.449
 10.25 –63.681 –39.694 –103.376
 10.50 –63.726 –39.694 –103.420
 10.75 –63.888 –39.694 –103.582
 11.00 –64.167 –39.694 –103.861
 11.25 –64.564 –39.694 –104.258
 11.50 –65.079 –39.694 –104.773
 11.75 –65.711 –39.694 –105.405
 12.00 –66.460 –39.694 –106.154

111.50 10.00 –62.909 –50.157 –113.066
 10.25 –62.169 –50.157 –112.326
 10.50 –61.547 –50.157 –111.703
 10.75 –61.041 –50.157 –111.198
 11.00 –60.654 –50.157 –110.810
 11.25 –60.383 –50.157 –110.540
 11.50 –60.231 –50.157 –110.387
 11.75 –60.195 –50.157 –110.352
 12.00 –60.278 –50.157 –110.434
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such that listwise deletion produced substantial bias, and the maximum likelihood estimates 
were quite accurate. Finally, both maximum likelihood and listwise deletion produced biased 
estimates in the MNAR simulation, although the bias in the maximum likelihood estimates 
was restricted to a subset of the parameter estimates. These simulation studies are limited 
in scope, but the results in Table 4.5 are predictable based on Rubin’s (1976) missing data 
theory and are consistent with a number of published computer simulation studies (e.g., 
Arbuckle, 1996; Enders, 2001; Enders & Bandalos, 2001; Gold & Bentler, 2000; Muthén 
et al., 1987; Olinsky, Chen, & Harlow, 2003; Wothke, 2000).

You might recall from Chapter 2 that stochastic regression imputation is the only tradi-
tional missing data handling technique that also produces unbiased parameter estimates 
under an MCAR or MAR mechanism (see Table 2.5). The downside of stochastic regression 
is that it underestimates standard errors, potentially by a substantial amount. If its assump-
tions (multivariate normality and an MAR mechanism) are met, maximum likelihood estima-
tion does not suffer from this same problem. To illustrate, I computed the confi dence interval 
coverage rates from the MAR simulation. Confi dence interval coverage quantifi es the percent-
age of samples where the 95% confi dence interval contains the true population parameter. 
If standard errors are accurate, confi dence interval coverage should equal 95%. In contrast, 
if the standard errors are too low, confi dence intervals will not capture the population param-

TABLE 4.5. Average Parameter Estimates from the 
Illustrative Computer Simulation

 Population Maximum Listwise
Parameter value likelihood deletion

MCAR simulation

µIQ 100.00 100.02 100.00
µJP 12.00 11.99 11.99
σ2

IQ 169.00 168.25 166.94
σ2

JP 9.00 8.96 8.94
σIQ,JP 19.50 19.48 19.31

MAR simulation

µIQ 100.00 100.01 110.35
µJP 12.00 12.01 13.18
σ2

IQ 169.00 168.50 61.37
σ2

JP 9.00 8.96 7.49
σIQ,JP 19.50 19.15 6.99

MNAR simulation

µIQ 100.00 100.00 105.19
µJP 12.00 14.12 14.38
σ2

IQ 169.00 169.11 141.41
σ2

JP 9.00 3.33 3.25
σIQ,JP 19.50 8.55 7.14
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eter as frequently as they should, and coverage rates will drop below 95%. Confi dence inter-
val coverage rates are a useful indicator of standard error bias because they directly relate to 
type I error rates (e.g., a confi dence interval coverage value of 90% suggests a twofold in-
crease in type I errors). The confi dence interval coverage values from the MAR simulation 
were quite close to the optimal 95% rate, which implies that the standard errors were rela-
tively free of bias. In contrast, using stochastic regression imputation to analyze the same 
simulation data produced coverage rates between 60 and 70% (i.e., on average, standard er-
rors were far too small). All things considered, the simulation results clearly favor maximum 
likelihood estimation, despite the fact that stochastic regression imputation requires identical 
assumptions.

4.5 ESTIMATING STANDARD ERRORS WITH MISSING DATA

Chapter 3 described the important role that second derivatives play in the computation of 
standard errors. Recall that the standard error computations begin with the matrix of second 
derivatives, the so-called Hessian matrix. Multiplying the Hessian by negative 1 yields the in-
formation matrix, and computing the inverse of the information gives the parameter covari-
ance matrix. The diagonal elements of the parameter covariance matrix contain the sampling 
variances of the parameter estimates, and taking the square root of these elements gives the 
standard errors. The computational steps are identical with missing data, except that it is 
necessary to distinguish between standard errors based on the observed information matrix 
versus those based on the expected information matrix.

Recall that the information matrix contains values that quantify the curvature of the log-
likelihood function. The magnitude of the curvature directly infl uences standard errors, such 
that peaked functions produce large information values and small standard errors, whereas 
fl at functions produce small information values and large standard errors. In a missing data 
analysis, two approaches can be used to convert second derivatives into information values, 
and thus two approaches have developed for computing standard errors (with complete 
data, the observed and the expected information matrices tend to yield the same standard 
errors). The distinction between the two computational approaches is important because the 
expected information matrix yields standard errors that require the MCAR assumption, 
whereas the observed information matrix gives standard errors that are appropriate with 
MAR data (Kenward & Molenberghs, 1998; Little & Rubin, 2002; Molenberghs & Kenward, 
2007). The next few sections describe the differences between these two procedures in more 
detail.

As an aside, some of the subsequent information is relatively technical in nature. For 
readers who are not interested in the mathematical details behind the two computational 
approaches, there is a simple take-home message: whenever possible, use the observed infor-
mation matrix to compute standard errors. Many (but not all) software packages implement 
this method, although it may not be the default analysis option. Later in the chapter I present 
some simulation results that strongly favor standard errors based on the observed informa-
tion matrix. It is therefore a good idea to consider this computational option when choosing 
a software package.
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4.6 OBSERVED VERSUS EXPECTED INFORMATION

The expected information matrix replaces certain terms in the second derivative formulas 
with their expected values (i.e., long-run averages), whereas the observed information uses 
the realized data values to compute these terms. Before describing how this process applies 
to missing data, it is useful to demonstrate the computational approaches in the context of a 
complete-data scenario. Efron and Hinkley (1978) use an intuitive example that involves the 
weighted mean to illustrate the distinction between the observed and the expected informa-
tion. In their example, one of two different measurement instruments generates a score for 
each case, and a coin toss determines which device generates each score. Because a coin toss 
dictates the use of each measurement instrument, the two instruments should generate the 
same number of scores over the long run, even though the observed frequency is likely to 
deviate from a 50/50 split in any given sample.

The standard error of the weighted mean relies on the score variance from each mea-
surement instrument (i.e., σ1

2 and σ2
2) as well as on the number of observations that each 

device generates (i.e., n1 and n2). There are two options for computing the standard error of 
the weighted mean. Because the two instruments should generate the same number of obser-
vations over the long run, one approach is to weight the variances equally in the standard 
error computations. Weighting the variances by the realized values of n1 and n2 is also ap-
propriate because the observed frequencies are unlikely to be exactly equal in any given 
sample. These two strategies are consistent with the notion of expected and observed informa-
tion, respectively.

Computing the information (and thus the standard error) requires the second deriva-
tive of the log-likelihood function. The second derivative formula for the weighted mean is 
–n1/σ1

2 – n2/σ2
2. Because a random process with a probability of .50 dictates the values of 

n1 and n2, the expectation (i.e., long-run average) of these two values is (n1 + n2)/2 = N/2. 
Substituting this expectation into the second derivative formula in place of n1 and n2 and 
multiplying the derivative by negative 1 yields the following equation for the expected 
information

 ∂2logL n1 n2 N/2 N/2 N/2 N/2
 IE = –E{———} = –E{– —– – —–} = – (– —— – ——) = —— + —— (4.6)
 ∂2µ σ1

2 σ2
2 σ1

2 σ2
2 σ1

2 σ2
2

where ∂2 denotes the second derivative, and E is the expectation symbol. In contrast, the ob-
served information relies on the realized values of n1 and n2, as follows:

 ∂2logL n1 n2 n1 n2 IO = –{———} = –{– —– – —–} = —– + —– (4.7)
 ∂2µ σ1

2 σ2
2 σ1

2 σ2
2

Following the procedures from Chapter 3, computing the inverse (i.e., reciprocal) of the infor-
mation gives the sampling variance of the mean, and taking the square root of the sampling 
variance returns the standard error. As you can see, the two information equations will yield 
the same standard error only if the observed data (i.e., the values of n1 and n2) match the long-
run expectation (i.e., N/2).
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How Does the Observed and Expected Information Apply to 
Missing Data?

The previous example is useful for understanding the conceptual difference between the 
observed and the expected information, but it does not illustrate how these concepts apply 
to missing data analyses. Applying the previous ideas to missing data, we fi nd that the real-
ized values of n1 are n2 are roughly analogous to the observed missing data pattern. In the 
weighted mean example, the expected information yields standard errors that do not depend 
on the values of n1 and n2, whereas the observed information uses the values of n1 and n2 to 
compute standard errors. In the context of a missing data analysis, the expected information 
produces standard errors that effectively ignore the pattern of missing values, whereas stan-
dard errors based on the observed information depend on the missing data pattern. This dis-
tinction has important practical implications because the two computational approaches 
make different assumptions about the missing data mechanism.

The missing data literature refers to the MAR mechanism as ignorable missingness be-
cause the distribution of missing data carries no information about the analysis model param-
eters. Interestingly, the realized missing data pattern does contain information that infl uences 
the information matrix, and thus the standard errors (Kenward & Molenberghs, 1998; Little, 
1976). Specifi cally, the expected information matrix yields standard errors that require the 
MCAR assumption, whereas the observed information matrix produces standard errors that 
are appropriate with MCAR and MAR data (Kenward & Molenberghs, 1998; Little & Rubin, 
2002; Molenberghs & Kenward, 2007). Kenward and Molenberghs (1998) provide a detailed 
discussion of this issue, and I summarize their main points in the next section.

4.7 A BIVARIATE ANALYSIS EXAMPLE

To illustrate the difference between the observed and expected information, suppose that it 
is of interest to use the IQ scores and job performance ratings from Table 4.1 to estimate the 
mean vector and the covariance matrix. The matrix of second derivatives (i.e., the Hessian) 
for this analysis is a 5 by 5 symmetric matrix in which each row and column corresponds to 
one of the estimated parameters (there are two means and three unique covariance matrix 
elements). Furthermore, the diagonal elements of the Hessian matrix contain the second de-
rivatives for each parameter, and the off-diagonal elements quantify the extent to which the 
log-likelihood functions for two parameters share similar curvature. Collectively, the elements 
in the Hessian matrix are the building blocks of maximum likelihood standard errors.

The observed and the expected information matrices differ in how they treat the devia-
tion scores (i.e., yi – µ) that appear in certain second derivative formulas. In particular, the 
two computational approaches produce different values for the off-diagonal elements of the 
Hessian that involve a mean parameter and a covariance matrix parameter. To illustrate, con-
sider the second derivative formula for the off-diagonal element that involves the mean and 
the variance of the IQ scores (i.e., µIQ and σ2

IQ, respectively). The second derivative formula is

 ∂2logL 1 0 IQi µIQ 1
 ———— = {–[1 0]!–1[ ]!–1 ∑

i

nC

=1
([  ] – [  ])} – —–— ∑

i=

nM

1
(IQi – µIQ) (4.8)

 ∂µIQ∂σ2
IQ 0 0 JPi µJP (σ2

IQ)2
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where ∂2 denotes a second derivative, nC is the number of complete cases, and nM is the 
number of incomplete cases. Note that the bracketed terms refl ect the contribution of the 
complete cases to the second derivative value, and the remaining terms contain the addi-
tional information from the incomplete cases. Although the derivative formula is relatively 
complex, the deviation scores and their sums are the key to understanding the distinction 
between the observed and the expected information.

Consider what happens to Equation 4.8 when the data are complete. In this situation, 
the bracketed terms alone generate the second derivative and the remaining terms vanish. 
The observed information uses the realized data values (i.e., IQi and JPi) to compute the sec-
ond derivative. By defi nition, the sum of the deviation scores equals zero, so the entire second 
derivative equation returns a value of zero. In contrast, the expected information replaces the 
observed scores with their expected values (i.e., long-run averages). The expected value of a 
random variable is the mean, and so the data values in Equation 4.8 get replaced by their 
respective averages. In this situation, the sum of the deviation scores also equals zero, as does 
the value of the second derivative. With complete data, all of the second derivative equations 
that involve a mean parameter and a covariance matrix parameter work in the same fashion 
and return a value of zero (i.e., the mean parameters are independent of the covariance ma-
trix parameters).

Thus far, using the observed data or the expected values to compute the second deriva-
tive formulas leads to the same answer. However, the two computational approaches diverge 
with missing data, and the second derivative values depend on the missing data mechanism. 
Consider what happens to Equation 4.8 when the job performance ratings are MCAR. If the 
values are missing in a purely random fashion, the observed job performance scores should 
be equally dispersed above and below the mean. Using the realized data values to compute 
the sums should therefore still produce a value of zero, on average. Consistent with the 
complete-data scenario, the expected information replaces the observed data values with 
their respective averages; thus, the deviation terms vanish and the entire equation returns a 
value of zero. Consequently, the observed and the expected information should produce the 
same second derivative value (and thus the same standard error), on average. Again, this re-
sult holds for any off-diagonal element of the Hessian that involves a mean parameter and a 
covariance matrix parameter.

The situation changes with MAR data. By virtue of the employee selection process, the 
job performance ratings in Table 4.1 are primarily missing from the lower tail of the score 
distribution. This implies that the observed data points are not equally dispersed above and 
below the mean. For example, a quick inspection of the data in Table 4.1 shows that the ma-
jority of the observed job performance ratings are above the maximum likelihood estimate of 
the mean, which is µ̂JP = 10.28. Consequently, the sum of the deviation scores (and thus the 
value of the second derivative) no longer equals zero. In contrast, because the expected infor-
mation replaces the observed data values with their respective averages, the second derivative 
formula will always return a value of zero, regardless of the missing data mechanism.

To numerically illustrate the differences between the observed and the expected infor-
mation, Table 4.6 shows the information matrices and the parameter covariance matrices 
from the bivariate analysis. First, notice that the expected information matrix contains values 
of zero for the off-diagonal elements that involve a mean parameter and a covariance matrix 
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parameter. Again, this is a consequence of replacing the observed data values with their ex-
pectations. In contrast, the observed information matrix has nonzero off-diagonal elements, 
which suggests that the mean parameters and the covariance matrix parameters are no longer 
independent. Computing the inverse of the information matrix gives the parameter covariance 
matrix, the diagonal elements of which contain sampling variances (i.e., squared standard 
errors). Notice that the expected information matrix produces smaller sampling variances for 
the parameters affected by missing data. Considering the job performance mean, the ob-
served information matrix gives a sampling variance of 1.508, whereas the expected informa-
tion matrix produces an estimate of .676. Not surprisingly, the disparity between these two 
values translates into a marked difference in the standard errors. For example, the observed 
information matrix yields a standard error of 1.228, whereas the expected information matrix 
yields a standard error of 0.822.

TABLE 4.6. Information and Parameter Covariance Matrices from the Bivariate 
Analysis Example

Parameter 1 2 3 4 5

Information matrix (observed)

1: µIQ 
0.134132

2: µJP 
–0.232050 1.879713

3: σ2
IQ 

0.001738 –0.014075 0.000492
4: σIQ,JP 

–0.014075 0.114012 –0.002065 0.022111
5: σ2

JP 
0.000000 0.000001 0.002692 –0.043618 0.176666

Parameter covariance matrix (observed)

1: µIQ 
9.479986

2: µJP 
1.170302 1.507618

3: σ2
IQ 

–0.000020 0.000059 3594.794000
4: σIQ,JP 

–0.000044 –13.703090 443.774440 280.705520
5: σ2

JP 
–0.000011 –3.383282 54.783599 62.542877 20.267296

Information matrix (expected)

1: µIQ 
0.134132

2: µJP 
–0.232050 1.879713

3: σ2
IQ 

0 0 0.000470
4: σIQ,JP 

0 0 –0.001889 0.020684
5: σ2

JP 
0 0 0.002692 –0.043619 0.176666

Parameter covariance matrix (expected)

1: µIQ 
9.479986

2: µJP 
1.170299 0.676469

3: σ2
IQ 

0 0 3594.805000
4: σIQ,JP 

0 0 443.776810 155.650330
5: σ2

JP 
0 0 54.784017 31.666846 12.644013

Note. Bold typeface denotes the sampling variance (i.e., squared standard error) of each parameter estimate.
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The sampling variances in Table 4.6 illustrate that the two computational approaches 
can produce very different standard errors, particularly with MAR data. At an intuitive level, 
using the observed information is desirable because the standard errors take into account the 
realized missing data pattern. The methodological literature clearly favors this approach be-
cause the resulting standard errors are accurate with MAR data. Referring to the observed 
information matrix, Kenward and Molenberghs (1998, p. 238) stated that “its use in missing 
data problems should be the rule rather than the exception.” Other authors have echoed this 
sentiment (Laird, 1988; Little & Rubin, 2002; Molenberghs & Kenward, 2007). Fortunately, 
many software packages can compute standard errors from the observed information matrix, 
although this may not be the default analysis option.

4.8 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

The results in Table 4.6 are useful for illustration purposes, but they do not provide strong 
evidence about the differences that can result from using the observed versus the expected 
information to compute standard errors. To better illustrate the performance of these compu-
tational approaches, I conducted a series of Monte Carlo computer simulations. The simula-
tion programs generated 1,000 samples of N = 250 from a population model that mimicked 
the IQ and job performance data in Table 4.1. The fi rst simulation created MCAR data by 
randomly deleting 50% of the job performance ratings, and the second simulation mimicked 
an MAR mechanism by eliminating the job performance scores for the cases in the lower half 
of the IQ distribution. After generating each data set, the simulation programs used maximum 
likelihood missing data handling to estimate the mean vector and the covariance matrix. 
They subsequently computed standard errors using both the observed and the expected in-
formation matrix.

Table 4.7 shows the average standard error for each parameter estimate. To gauge the 
accuracy of the standard errors, the table also gives the standard deviation of the parameter 
estimates across the 1,000 samples, along with the confi dence interval coverage values. The 
standard deviations quantify the actual sampling fl uctuation of the estimates and provide a 
benchmark for assessing the average standard errors. Confi dence interval coverage quantifi es 
the percentage of samples where the 95% confi dence interval contains the true population 
parameter. If standard errors are accurate, confi dence interval coverage should equal 95%. 
In contrast, if the standard errors are too low, confi dence intervals will not capture the popu-
lation parameter as frequently as they should, and coverage rates will drop below 95%. Con-
fi dence interval coverage rates are a useful indicator of standard error bias because they di-
rectly relate to type I error rates (e.g., a confi dence interval coverage value of 90% suggests a 
twofold increase in type I errors).

As seen in the table, the two computational approaches produced nearly identical re-
sults in the MCAR simulation, and the standard errors from both methods were quite accu-
rate (i.e., the average standard errors were quite close to the standard deviations, and the 
coverage values were roughly 95%). In the MAR simulation, the observed information matrix 
produced standard errors that closely resembled the standard deviation values (i.e., the true 
standard errors), and the corresponding confi dence interval coverage values were quite close 
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to the optimal 95% rate. In contrast, the expected information matrix produced inaccurate 
standard errors for the parameters affected by missing data. For example, the standard error 
of the job performance mean was too small, on average, and had a coverage value of approxi-
mately 80%. From a practical standpoint, a confi dence interval coverage value of 80% repre-
sents a type I error rate of approximately 20%, which is a fourfold increase over the nominal 
5% type I error rate.

It is diffi cult to say whether the simulation results in Table 4.7 are representative of real-
world analysis examples, but they clearly suggest that standard errors based on the expected 
information matrix are prone to severe bias and are only valid with MCAR data. Many (but 
not all) software programs can compute standard errors from the observed information ma-
trix, so you should consider this option when choosing a software package. If you do not have 
access to software that computes the observed information matrix, you can always use the 
likelihood ratio statistic to perform signifi cance tests (e.g., by fi tting two models, one of which 
constrains the parameter of interest to zero during estimation) because the likelihood ratio is 
unaffected by the choice of information matrix.

4.9 AN OVERVIEW OF THE EM ALGORITHM

Certain complete-data applications of maximum likelihood estimation (e.g., the estimation 
of means, variances, covariances, and regression coeffi cients) are straightforward because 
familiar equations defi ne the maximum likelihood parameter estimates. With few excep-
tions, missing data analyses require iterative optimization algorithms, even for very simple 
estimation problems. The EM algorithm is one such procedure that is particularly important 
for missing data analyses. The origins of EM date back to the 1970s (Beale & Little, 1975; 
Demp ster et al., 1977; Orchard & Woodbury, 1972), with Dempster et al. (1977) playing a 

TABLE 4.7. Simulation Results Comparing Observed and Expected Standard Errors

 Observed information Expected information

Parameter SD Average SE Coverage  Average SE Coverage

MCAR simulation

µIQ 0.791 0.820 0.963 0.820 0.963
µJP 0.247 0.250 0.951 0.250 0.951
σ2

IQ 14.777 15.049 0.948 15.049 0.948
σ2

JP 1.105 1.117 0.939 1.114 0.937
σIQ,JP 3.434 3.484 0.949 3.465 0.946

MAR simulation

µIQ 0.806 0.820 0.947 0.820 0.947
µJP 0.394 0.395 0.953 0.249 0.804
σ2

IQ 15.074 15.071 0.949 15.071 0.949
σ2

JP 1.490 1.439 0.920 1.112 0.851
σIQ,JP 5.275 5.283 0.959  3.463 0.795
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key role in developing the algorithm. The early applications of EM primarily focused on esti-
mating a mean vector and a covariance matrix with missing data, but methodologists have 
since extended the algorithm to address a variety of diffi cult complete-data estimation prob-
lems, including multilevel models, fi nite mixtures, and structural equation models, to name 
a few (Jamshidian & Bentler, 1999; Liang & Bentler, 2004; McLachlan & Krishnan, 1997; 
Muthén & Shedden, 1999; Raudenbush & Bryk, 2002). To keep things simple, I describe 
the estimation process for a mean vector and a covariance matrix, but the EM algorithm is 
readily suited for more complex missing data problems (e.g., structural equation models with 
missing data; Jamshidian & Bentler, 1999).

The EM algorithm is a two-step iterative procedure that consists of an E-step and an 
M-step (E and M stand for expectation and maximization, respectively). The iterative process 
starts with an initial estimate of the mean vector and the covariance matrix (e.g., a listwise 
deletion estimate of " and !). The E-step uses the elements in the mean vector and the co-
variance matrix to build a set of regression equations that predict the incomplete variables 
from the observed variables. The purpose of the E-step is to fi ll in the missing values in a 
manner that resembles stochastic regression imputation (I use the words “fi ll in” loosely 
here, because the algorithm does not actually impute the missing values). The M-step subse-
quently applies standard complete-data formulas to the fi lled-in data to generate updated 
estimates of the mean vector and the covariance matrix. The algorithm carries the updated 
parameter estimates forward to the next E-step, where it builds a new set of regression equa-
tions to predict the missing values. The subsequent M-step then re-estimates the mean vector 
and the covariance matrix. EM repeats these two steps until the elements in "̂ and !̂ no lon-
ger change between consecutive M-steps, at which point the algorithm has converged on the 
maximum likelihood estimates. These estimates might be of substantive interest in and of 
themselves, or they can serve as input data for other multivariate statistical procedures 
(Enders, 2003; Enders & Peugh, 2004; Yuan & Bentler, 2000). It is important to reiterate 
that the algorithm does not impute or replace the missing values. Rather, it uses all of the 
available data to estimate the mean vector and the covariance matrix.

In Chapter 3, I used a hill-climbing analogy to introduce iterative optimization algo-
rithms. In this analogy, the goal of estimation is to locate the peak of the log-likelihood func-
tion (i.e., climb to the top of a hill) where the maximum likelihood estimates are located. In 
an EM analysis, the initial estimates of the mean vector and the covariance matrix effectively 
serve as the starting coordinates for the climb, and a single iteration (i.e., one E- and one 
M-step) represents a step toward the top of the hill. Numerically, the goal of each iteration 
is to adjust the parameter values in a direction that increases the log-likelihood value (i.e., the 
algorithm should climb in a vertical direction). The regression-based procedure at each 
E-step does just that, and the updated parameter estimates at each M-step will produce a 
higher log-likelihood value than the estimates from the preceding M-step. As the climb nears 
the plateau, the adjustments to the parameter estimates are very small and the log-likelihood 
effectively remains the same across successive M-steps. When the difference between succes-
sive estimates of " and ! falls below some very small threshold (software programs often 
refer to this threshold as the convergence criterion), the iterative process stops. At this 
point, the algorithm has located the peak of the log-likelihood function, and the values of the 
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mean vector and the covariance matrix from the fi nal M-step serve as the maximum likeli-
hood estimates.

4.10 A DETAILED DESCRIPTION OF THE EM ALGORITHM

The previous description of EM is conceptual in nature and omits many of the mathematical 
details of the procedure. This section expands the previous ideas and gives a more precise 
explanation of the E-step and the M-step. To illustrate the mechanics of EM, I use a bivariate 
analysis example where one of the variables is incomplete. Throughout this section, I use X 
to denote the complete variable (e.g., IQ scores) and Y to represent the incomplete variable 
(e.g., job performance ratings). This is a relatively simple estimation problem, but the basic 
ideas readily extend to multivariate analyses with general patterns of missing data.

With complete data, the following formulas generate the maximum likelihood estimates 
of the mean, the variance, and the covariance.

 1
 µ̂Y = —∑Y (4.9)
 N

 1 (∑Y)2

 σ̂2
Y = —(∑Y2 – —–—) (4.10)

 N N

 1 ∑X∑Y
 σ̂X,Y = —(∑XY – —––—) (4.11)
 N N

Notice that the sum of the scores (i.e., ∑X and ∑Y ), the sum of the squared scores (i.e., ∑X2 
and ∑Y2), and the sum of the cross product terms (i.e., ∑XY ) are the basic building blocks 
of the previous equations. Collectively, these quantities are known as suffi cient statistics 
because they contain all of the necessary information to estimate the mean vector and the 
covariance matrix. As you will see, these suffi cient statistics play an important role in the 
E-step.

The purpose of the E-step is to “fi ll in” the missing values so that the M-step can use 
Equations 4.9 through 4.11 to generate parameter estimates. More accurately, the E-step fi lls 
in each case’s contribution to the suffi cient statistics (Dempster et al., 1977). The E-step uses 
the elements in the mean vector and the covariance matrix to build a set of regression equa-
tions that predict the incomplete variables from the observed variables. In a bivariate data set 
with missing value on Y, the necessary equations are

 σ̂X,Y β̂1 = —— (4.12)
 σ̂2

X

 β̂0 = µ̂Y  – β̂1µ̂X (4.13)
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 σ̂2
Y|X = σ̂2

Y – β̂2
1σ̂2

X (4.14)

 Ŷi = β̂0 + β̂1Xi (4.15)

where β̂0 and β̂1 are the intercept and slope coeffi cients, respectively, σ̂2
Y|X is the residual vari-

ance from the regression of Y on X, and Ŷi is the predicted Y score for a given value of X. The 
means, variances, and covariances that appear on the right side of the equations are elements 
from the mean vector and the covariance matrix.

The missing data complicate an otherwise straightforward analysis because the incom-
plete cases have nothing to contribute to ∑Y, ∑Y2, and ∑XY. The E-step replaces the miss-
ing components of these suffi cient statistics with their expected values (i.e., long-run aver-
ages). EM borrows information from other variables, so the algorithm actually uses so-called 
conditional expectations to replace the missing components of the formulas. To illustrate, 
consider the sum of the scores and the sum of the cross product terms (i.e., ∑Y and ∑XY, 
respectively). The expected value of Y is the predicted score from Equation 4.15, so the 
E-step replaces the missing components of ∑Y and ∑XY with Ŷi. Next, consider the sum of 
the squared scores, ∑Y2. The expected value of a squared variable is Ŷi

2 + σ̂2
Y|X, where Ŷi

2 is the 
squared predicted score, and σ̂2

Y|X is the residual variance from the regression of Y on X. The 
E-step replaces the missing components of ∑Y2 with this expectation.

Notice that the E-step does not actually impute the raw data. Rather, it fi lls in the com-
putational building blocks for the mean, the variance, and the covariance (i.e., the suffi cient 
statistics). Once this process is complete, the M-step becomes a straightforward estimation 
problem that uses the fi lled-in suffi cient statistics to compute Equations 4.9 through 4.11. 
The resulting parameter estimates carry forward to the next E-step, where the process begins 
anew.

4.11 A BIVARIATE ANALYSIS EXAMPLE

Having outlined the necessary mathematical details, I use the IQ and job performance scores 
in Table 4.1 to illustrate a worked analysis example. Software programs that implement the EM 
algorithm fully automate the estimation procedure, so there is no need to perform the com-
putational steps manually. Nevertheless, examining what happens at each step of the process 
is instructive and gives some insight into the inner workings of the algorithm.

EM requires an initial estimate of the mean vector and the covariance matrix. A number 
of traditional missing data techniques can generate these starting values, including deletion 
methods and single imputation (Little & Rubin, 2002, p. 225). To be consistent with statisti-
cal software packages (e.g., the SAS MI procedure), I use pairwise deletion estimates of the 
means and the variances and set the covariance to zero, as follows:

 
"̂0 =

 [µ̂IQ] = [µ̂X] = [100.000] µ̂JP µ̂Y 11.700

 
!̂0 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [199.579 0.000] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 0 7.344
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Throughout the example, I use a numeric subscript to index each EM cycle, and a value of 
zero denotes the fact that these parameter values precede the fi rst E-step. Finally, to maintain 
consistency with the previous notation, I use X and Y to denote the IQ and job performance 
scores, respectively.

The fi rst E-step uses the elements in the mean vector and the covariance matrix to build 
a regression equation that predicts the incomplete variable (e.g., job performance) from the 
complete variable (e.g., IQ). Substituting the appropriate elements from "̂0 and !̂0 into 
Equations 4.12 through 4.14 yields the following estimates: β̂0 = 11.700, β̂1 = 0, and σ̂2

Y|X = 
7.344. Because the regression slope is zero, all of the predicted values happen to be the same, 
Ŷ1 = 11.700. The ultimate goal of the E-step is to fi ll in the missing components of ∑Y, ∑Y2, 
and ∑XY. Specifi cally, the predicted values fi ll in the missing components of ∑Y and ∑XY, 
and Ŷi

2 + σ̂2
Y|X = 11.7002 + 7.344 = 144.234 replaces the missing parts of ∑Y2. Table 4.8 

shows the computations for the fi rst E-step, and the resulting suffi cient statistics appear in 
the bottom row of the table.

Having dealt with the missing values in the E-step, the M-step uses standard complete-
data formulas to update the mean vector and the covariance matrix. Substituting the suffi cient 
statistics from Table 4.8 into Equations 4.9 through 4.11 updates the parameter estimates, 
as follows.

 
"̂1 =

 [µ̂IQ] = [µ̂X] = [100.000] µ̂JP µ̂Y 11.700

 
!̂1 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [189.600 5.200] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 5.200 6.977

Notice that the job performance mean did not change, even though this variable has missing 
values. Because the initial regression slope is zero, the intercept (i.e., the mean job perfor-
mance rating) replaces the missing Y values. Consequently, the mean does not change in the 
fi rst step, although it will in subsequent steps. In addition, notice that the IQ variance changed, 
even though this variable is complete. This change occurred because the maximum likelihood 
estimate uses N rather than N – 1 in the denominator (the usual formula for the sample vari-
ance generated the initial estimate).

With the fi rst cycle completed, the updated parameter estimates carry forward to the next 
E-step, where EM builds a new regression equation. Substituting the appropriate elements 
from "̂1 and !̂1 into Equations 4.12 through 4.14 yields the following estimates: β̂0 = 8.957, 
β̂1 = 0.027, and σ̂2

Y|X = 6.834. Consistent with the previous E-step, expected values replace 
the missing components of the suffi cient statistics. For example, the individual with an IQ 
score of 78 contributes a predicted job performance rating of Ŷi = 8.975 + 0.027(78) = 
11.063 to the computation of ∑Y and ∑XY. Similarly, this case’s contribution to ∑Y2 is 
11.0632 + 6.834 = 129.224. Table 4.9 shows the computations for the second E-step, with 
the suffi cient statistics in the bottom row of the table.

As before, the M-step uses the suffi cient statistics from the preceding E-step to update 
the mean vector and the covariance matrix. The suffi cient statistics in Table 4.9 produce the 
following estimates.
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"̂2 =

 [µ̂IQ] = [µ̂X] = [100.000] µ̂JP µ̂Y 11.523

 
!̂2 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [189.600 7.663] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 7.663 6.764

Notice that the IQ mean and variance do not change because these parameters immediately 
converge to the maximum likelihood estimates in the fi rst EM cycle. However, the parameters 
affected by missing data do change, and they continue to do so from one M-step to the next.

As you might have guessed, "̂2 and !̂2 carry forward to the next E-step, where the algo-
rithm generates a new set of regression estimates that fi ll in the missing components of the suf-
fi cient statistics. The following M-step then uses the suffi cient statistics to update the param-
eter values. EM repeats these two steps until the elements in the mean vector and the covariance 
matrix no longer change (or change by a trivially small amount) between consecutive M-steps, 
at which point the algorithm has converged on the maximum likelihood estimates. This ex-
ample requires 59 cycles to converge and yields the following parameter estimates.

 
"̂ = [µ̂IQ] = [100.000] µ̂JP 10.281

 
!̂ = [ σ̂2

IQ
 
 σ̂IQ,JP]  = [189.600 23.393] σ̂JP,IQ σ̂2

JP 23.393 8.206

TABLE 4.8. Computation of the Suffi cient Statistics for the First E-Step

 X X2 Y Y2 XY

  78 6084 11.700 11.7002 + 7.344 912.600
  84 7056 11.700 11.7002 + 7.344 982.800
  84 7056 11.700 11.7002 + 7.344 982.800
  85 7225 11.700 11.7002 + 7.344 994.500
  87 7569 11.700 11.7002 + 7.344 1017.900
  91 8281 11.700 11.7002 + 7.344 1064.700
  92 8464 11.700 11.7002 + 7.344 1076.400
  94 8836 11.700 11.7002 + 7.344 1099.800
  94 8836 11.700 11.7002 + 7.344 1099.800
  96 9216 11.700 11.7002 + 7.344 1123.200
  99 9801  7  49  693
 105 11025 10 100 1050
 105 11025 11 121 1155
 106 11236 15 225 1590
 108 11664 10 100 1080
 112 12544 10 100 1120
 113 12769 12 144 1356
 115 13225 14 196 1610
 118 13924 16 256 1888
 134 17956 12 144 1608

 ∑X = ∑X2 = ∑Y = ∑Y2 = ∑XY =
 2000.000 203792.000 234.000 2877.340 23504.500

Note. X = IQ and Y = job performance. Bold typeface denotes imputed values.
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The regression-based procedure that EM uses to update the parameters largely ob-
scures the fact that the estimates are incrementally improving from one step to the next. To 
illustrate how EM “climbs” to the top of the log-likelihood function, I used the parameter 
estimates from each iteration to compute the sample log-likelihood values. (EM does not 
actually manipulate the log-likelihood equation, so the log-likelihood values are not an auto-
matic by-product of the analysis.) For example, substituting the starting values (i.e., "̂0 and 
!̂0) and the observed data into Equation 4.2 yields an initial log-likelihood value of logL = 
–76.9318195. Similarly, substituting "̂1 and !̂1 into Equation 4.2 gives the log-likelihood 
for the fi rst EM cycle, and so on. Table 4.10 shows the log-likelihood values and the job per-
formance parameters from selected cycles of the bivariate EM analysis. As you can see, the 
fi rst few EM cycles produce the largest changes in the log-likelihood, whereas the latter 
steps yield much smaller changes. The same is also true for the parameter estimates. In ef-
fect, the optimization algorithm traverses the steepest portion of the ascent at the begin-
ning of the hike, and the climb becomes more gradual near the plateau. As the algorithm 
nears the peak of the log-likelihood function, each additional cycle produces a very small 
improvement in the log-likelihood value, and the adjustments to the parameters are so small 
that the estimates effectively remain the same between successive M-steps. For example, in 
the fi nal three EM cycles, the changes to the job performance mean occur in the fourth deci-
mal, and the changes to the sample log-likelihood occur past the seventh decimal. At this 
point, the hill climb is effectively over, and the algorithm has converged on the maximum like-
lihood estimates.

TABLE 4.9. Computation of the Suffi cient Statistics for the Second E-Step

 X X2 Y Y2 XY

  78 6084 11.063 11.0632 + 6.834 862.914
  84 7056 11.225 11.2252 + 6.834 942.900
  84 7056 11.225 11.2252 + 6.834 942.900
  85 7225 11.252 11.2522 + 6.834 956.420
  87 7569 11.306 11.3062 + 6.834 983.622
  91 8281 11.414 11.4142 + 6.834 1038.674
  92 8464 11.441 11.4412 + 6.834 1052.572
  94 8836 11.495 11.4952 + 6.834 1080.530
  94 8836 11.495 11.4952 + 6.834 1080.530
  96 9216 11.549 11.5492 + 6.834 1108.704
  99 9801  7  49  693
 105 11025 10 100 1050
 105 11025 11 121 1155
 106 11236 15 225 1590
 108 11664 10 100 1080
 112 12544 10 100 1120
 113 12769 12 144 1356
 115 13225 14 196 1610
 118 13924 16 256 1888
 134 17956 12 144 1608

 ∑X = ∑X2 = ∑Y = ∑Y2 = ∑XY =
 2000.000 203792.000 230.465 2790.990 23199.766

Note. X = IQ; Y = job performance. Bold typeface denotes imputed values. 
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As an aside, the EM differs from other optimization algorithms (e.g., the scoring algo-
rithm; Hartley & Hocking, 1971; Trawinski & Bargmann, 1964) because it does not require 
the computation of fi rst or second derivatives. Consequently, the EM algorithm does not 
automatically produce the basic building blocks of maximum likelihood standard errors. 
Methodologists have outlined approaches for generating standard errors in an EM analysis 
(Little & Rubin, 2002; Meng & Rubin, 1991), but these methods require additional compu-
tational steps that are not implemented in all software packages. Bootstrap resampling is a 
simulation-based approach that is particularly useful for estimating standard errors with non-
normal data, but it is also applicable to an EM analysis. I give a detailed description of boot-
strap in Chapter 5.

4.12 EXTENDING EM TO MULTIVARIATE DATA

The preceding bivariate analysis is relatively straightforward because the missing values are 
isolated to a single variable. Applying EM to multivariate data is typically more complex be-
cause the E-step requires a unique regression equation (or set of equations) for each missing 
data pattern. Despite this complication, the basic logic of EM remains the same and requires 
just a few additional details. To illustrate the changes to the E-step, I use the full data set in 
Table 4.1. EM with three variables is still relatively straightforward, but the logic of this ex-
ample generalizes to data sets with any number of variables. Finally, note that the procedural 
details of the M-step do not change because this step always uses the standard complete-data 

TABLE 4.10. Sample Log-Likelihood Values across EM Cycles

EM cycle Log-likelihood µ̂JP σ̂2
JP σ̂IQ,JP

 0 –76.9318195 11.7000000 7.3440000 0.0000000
 1 –76.5939005 11.7000000 6.9772220 5.2002527
 2 –76.4254785 11.5225410 6.7641355 7.6631331
 3 –76.2929150 11.3944910 6.6538592 9.3296347
 4 –76.1883350 11.2643060 6.6285983 10.9748205
 5 –76.1059020 11.1493190 6.6552569 12.4275358
 6 –76.0410225 11.0477700 6.7152964 13.7104777
 7 –75.9900400 10.9580870 6.7959299 14.8434952
 8 –75.9500360 10.8788850 6.8882473 15.8441088
 9 –75.9186850 10.8089380 6.9860245 16.7277910
10 –75.8941405 10.7471650 7.0849410 17.5082066
… … … … …
50 –75.8064920 10.2835690 8.1993288 23.3651099
51 –75.8064915 10.2831910 8.2005058 23.3698912
52 –75.8064905 10.2828570 8.2015456 23.3741137
53 –75.8064900 10.2825610 8.2024642 23.3778428
54 –75.8064895 10.2823010 8.2032757 23.3811362
55 –75.8064890 10.2820710 8.2039925 23.3840446
56 –75.8064890 10.2818670 8.2046257 23.3866132
57 –75.8064885 10.2816880 8.2051849 23.3888817
58 –75.8064885 10.2815290 8.2056789 23.3908850
59 –75.8064885 10.2813890 8.2061153 23.3926542
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formulas in Equations 4.9 through 4.11 to update the parameter estimates. Consequently, 
the following discussion focuses solely on the E-step. To maintain consistent notation, X 
denotes the IQ scores, Y represents the job performance ratings, and Z corresponds to the 
well-being scores.

Applying the E-step to the data in Table 4.1 requires the following set of suffi cient sta-
tistics: ∑X, ∑X2, ∑Y, ∑Y2, ∑Z, ∑Z2, ∑XY, ∑XZ, and ∑YZ. Notice that these quantities are 
the same as those from the previous bivariate example (i.e., the sum of the scores, the sum 
of the squared scores, and the sum of the cross product terms). As before, the purpose of the 
E-step is to replace the missing components of the suffi cient statistics with expectations, but 
this now requires a unique set of regression equations for missing data pattern. Returning to 
the data in Table 4.1, note that there are four missing data patterns: (1) cases with only IQ 
scores, (2) cases with IQ and well-being scores, (3) cases with IQ and job performance 
scores, and (4) cases with complete data on all three variables. The complete cases are not a 
concern, so the E-step only deals with the three patterns that have missing data. Table 4.11 
shows the missing suffi cient statistics and the relevant expectation terms for each missing 
data pattern.

Consider the subsample of cases with missing job performance ratings (i.e., missing Y 
values). These individuals have complete data on the IQ and psychological well-being variables 
(i.e., X and Z, respectively), so the problematic suffi cient statistics are ∑Y, ∑XY, ∑YZ, and ∑Y2. 
Following the logic from the bivariate example, predicted scores replace the missing compo-
nents of the variable sums and sums of products. This missing data pattern has two complete 
variables, so a multiple regression equation generates the predicted scores, as follows:

 Ŷi|X,Z = β̂0 + β̂1Xi + β̂2Zi (4.16)

where Ŷi|X,Z is the predicted Y value for case i (the vertical bar denotes the fact that the pre-
dicted score is conditional on both X and Z). Consistent with the bivariate analysis, the 
expectation for ∑Y2 involves a squared predicted score and a residual variance estimate. 

TABLE 4.11. Expectations for a Multivariate Application of the 
EM Algorithm

Missing variable Missing suffi cient statistics Imputed expectations

Y ∑Y, ∑XY, ∑YZ Ŷi|X,Z

(job performance) ∑Y2 Ŷ2
i|X,Z + σ̂2

Y|X,Z

Z ∑Z, ∑XZ, ∑YZ Ẑi|X,Y

(well-being) ∑Z2 Ẑ 2
i|X,Y + σ̂2

Z|X,Y

Y and Z ∑Y, ∑XY, ∑YZ Ŷi|X

(job performance ∑Y2 Ŷ2
i|X + σ̂2

Y|X

and well-being) ∑Z, ∑XY, ∑YZ Ẑi|X

 ∑Z2 Ẑ 2
i|X + σ̂2

Z|X

 ∑YZ (Ŷi|X)(Ẑi|X) + σ̂Y,Z|X
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Consequently, Ŷ2
i|X,Z + σ̂2

Y|X,Z replaces the missing components of ∑Y2, where σ̂2
Y|X,Z is the 

residual variance from the regression of Y on X and Z.
Next, consider the individual with a missing well-being score (i.e., missing Z value). 

Again, a multiple regression equation generates the predicted score

 Ẑi|X,Y = β̂0 + β̂1Xi + β̂2Yi, (4.17)

and this predicted value replaces the missing components of ∑Z, ∑XZ, and ∑YZ. As seen in 
Table 4.11, the expectation for the missing Z2 value is similar to the previous missing data 
pattern and equals the squared predicted score plus the residual variance from the regression 
of Z on X and Y.

Thus far, the E-step has not changed very much. Each missing data pattern requires a 
unique set of regression equations and expectations, but the underlying logic is the same as 
it was in the bivariate example. The only additional nuance occurs with patterns that have two 
or more missing variables. For example, consider the subsample of cases with missing job 
performance ratings and well-being scores (i.e., Y and Z, respectively). As before, regression 
equations generate predicted scores for each missing variable, as follows:

 Ŷi|X = β̂0 + β̂1Xi (4.18)

 Ẑi|X = β̂2 + β̂3Xi (4.19)

As seen in Table 4.11, the predicted scores and corresponding residual variances fi ll in all 
but one of the suffi cient statistics. The cross product term for the two missing variables (i.e., 
∑YZ) involves a new expectation, (Ŷi|X)(Ẑi|X) + σ̂Y,Z|X, where the terms in parentheses are the 
predicted values from previous regression equations, and σY,Z|X is the residual covariance 
between job performance and well-being, which is σ̂Y,Z|X = σ̂Y,Z – β̂1β̂3σ̂2

X.
Extending the E-step computations to complex multivariate analyses with general miss-

ing data patterns is straightforward because the relevant expectations are identical to those 
in Table 4.11. The main procedural diffi culty is the computation of regression equations for 
each missing data pattern. Not surprisingly, the number of missing data patterns (and thus 
the number of regression equations) can get quite large as the number of variables increases. 
Although it sounds tedious to construct a set of regressions for each missing data pattern, a 
computational algorithm called the sweep operator can automate this process. The sweep 
operator combines the mean vector and the covariance matrix into a single augmented ma-
trix and applies a series of transformations that produce the desired regression coeffi cients 
and residual variances. A number of sources give detailed descriptions of the sweep operator 
(Demp ster, 1969; Goodnight, 1979; Little & Rubin, 2002).

4.13 MAXIMUM LIKELIHOOD ESTIMATION SOFTWARE OPTIONS

Although the mathematical foundations of maximum likelihood missing data handling have 
been in the literature for many years, estimation routines have only recently become widely 
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available in statistical software packages. In the late 1980s, methodologists outlined tech-
niques that effectively tricked complete-data software packages into implementing maximum 
likelihood missing data handling by treating each missing data pattern as a subpopulation 
in a multiple group structural equation model (Allison, 1987; Muthén, Kaplan, and Hollis, 
1987). However, these approaches did not enjoy widespread use because they were compli-
cated to program and were unwieldy to implement with more than a small handful of miss-
ing data patterns. Fortunately, this approach is no longer necessary.

Many of the recent software innovations have occurred within the latent variable model-
ing framework, and virtually every structural equation modeling software package now im-
plements maximum likelihood missing data handling. (This approach is often referred to as 
full information maximum likelihood estimation, or simply FIML.) The latent variable mod-
eling framework encompasses a vast number of analytic methods that researchers use on a 
routine basis (e.g., correlation, regression, factor analysis, path analysis, structural equation 
models, mixture models, multilevel models). Structural equation modeling software is there-
fore an ideal tool for many missing data problems. Structural equation modeling programs 
have undergone dramatic improvements in the number of and type of missing data analyses 
that they are capable of performing, and these packages continue to evolve at a rapid pace. 
Because of their fl exibility and breadth, I rely heavily on structural equation programs to 
generate the analysis examples throughout the book. I discuss the capabilities of specifi c 
packages in more detail in Chapter 11.

As an aside, a word of caution is warranted concerning software programs that imple-
ment the EM algorithm. Some popular packages (e.g., LISREL and SPSS) offer the option of 
imputing the raw data after the fi nal EM cycle. This is somewhat unfortunate because it gives 
the impression that a maximum likelihood approach has properly handled the missing val-
ues. In reality, this imputation scheme is nothing more than regression imputation. The only 
difference between EM imputation and regression imputation is that the EM approach uses 
a maximum likelihood estimate of the mean vector and the covariance matrix to generate the 
regression equations, whereas standard regression imputation schemes tend to use listwise 
deletion estimates of " and ! to build the regressions. Although it may sound appealing to 
base the imputation process on maximum likelihood estimates, doing so leads to the same 
negative outcomes described in Chapter 2, namely, biased parameter estimates and attenu-
ated standard errors (von Hippel, 2004). Consequently, it is a good idea to avoid EM-based 
single imputation routines. In situations that necessitate a fi lled-in data set, multiple imputa-
tion is a much better option.

4.14 DATA ANALYSIS EXAMPLE 1

This section describes a data analysis that uses the EM algorithm to generate maximum like-
lihood estimates of a mean vector, covariance matrix, and correlation matrix.* The data for 
this analysis consist of scores from 480 employees on eight work-related variables: gender, 
age, job tenure, IQ, psychological well-being, job satisfaction, job performance, and turnover 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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intentions. I generated these data to mimic the correlation structure of published research 
articles in the management and psychology literature (e.g., Wright & Bonett, 2007; Wright, 
Cropanzano, & Bonett, 2007). The data have three missing data patterns, each of which con-
tains one-third of the sample. The fi rst pattern consists of cases with complete data, and the 
remaining two patterns have missing data on either well-being or job satisfaction. These pat-
terns mimic a situation in which the data are missing by design (e.g., to reduce the cost of 
data collection).

Table 4.12 shows the maximum likelihood estimates, along with the corresponding es-
timates from the complete data. To facilitate comparison, a shaded box encloses the param-
eter estimates affected by the missing data. As seen in the table, the missing data estimates 
are quite similar to those of the complete data. For example, the two sets of correlation values 
typically differ by approximately .02, and the largest difference is .04 (the correlation be-
tween well-being and turnover intentions). The similarity of the two sets of estimates might 
seem somewhat remarkable given that 33% of the satisfaction and well-being scores are 
missing.

TABLE 4.12. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1 2 3 4 5 6 7 8

Missing data maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.136 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.155 0.154 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.115 0.047 –0.015 0.005 0.068
4: Well-being 1.148 0.569 0.067 1.382 0.322 0.456 –0.257 0.291
5: Satisfaction 0.861 0.565 0.028 0.446 1.386 0.184 –0.234 0.411
6: Performance –0.330 0.061 –0.009 0.671 0.271 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 2.876 4.074 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.288 5.950 6.021 0.321 100.102

Complete data maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.173 0.157 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.097 0.038 –0.015 0.005 0.068
4: Well-being 1.208 0.667 0.060 1.518 0.348 0.447 –0.296 0.306
5: Satisfaction 0.697 0.576 0.022 0.503 1.377 0.176 –0.222 0.378
6: Performance –0.330 0.061 –0.009 0.690 0.259 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.170 –0.122 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 3.172 3.730 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Note. Correlations are shown in the upper diagonal in bold typeface. Elements affected by missing data are en-
closed in the shaded box.
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4.15 DATA ANALYSIS EXAMPLE 2

The second analysis example uses maximum likelihood to estimate a multiple regression 
model. The analysis uses the same employee data set as the fi rst example and involves the 
regression of job performance ratings on psychological well-being and job satisfaction, as 
follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

The top panel of Figure 4.1 shows the path diagram of the regression model. I used a struc-
tural equation modeling program to estimate the regression model because these packages 
offer a convenient platform for implementing maximum likelihood estimation with missing 
data.* Finally, note that I requested standard errors based on the observed information 
matrix.

Researchers typically begin a regression analysis by examining the omnibus F test. The 
likelihood ratio statistic and the multivariate Wald test are analogous procedures in a maxi-
mum likelihood analysis. The procedural details of both tests are identical with or without 
missing data. Recall from Chapter 3 that the likelihood ratio test involves a pair of nested 
models. The full model corresponds to the multiple regression in the top panel of Figure 4.1, 
and the restricted model is one that constrains both regression slopes to zero during estima-
tion. (The regression intercept is not part of the usual omnibus F test, so it appears in both 
models.) Estimating the two models produced log-likelihood values of logLFull = –1753.093 
and logLRestricted = –1793.181, respectively. Notice that log-likelihood for the restricted model 
is quite a bit lower than that of the full model, which suggests that fi xing the slopes to zero 
deteriorates model fi t. Using the log-likelihood values to compute the likelihood ratio test 
(see Equation 3.16) yields LR = 80.18. The models differ by two parameters (i.e., the restricted 
model constrains two coeffi cients two zero), so referencing the test statistic to a chi-square 
distribution with two degrees of freedom returns a probability value of p < .001. The signifi -
cant likelihood ratio test indicates that the fi t of the restricted model is signifi cantly worse 
than that of the full model. Consistent with the interpretation of an F statistic, this suggests 
that at least one of the regression coeffi cients is signifi cantly different from zero.

Researchers typically follow up a signifi cant omnibus test by examining partial regres-
sion coeffi cients. Table 4.13 gives the regression model estimates along with those of the 
corresponding complete-data analysis from Chapter 3. As seen in the table, psychological 
well-being was a signifi cant predictor of job performance, β̂1 = 0.476, z = 8.66, p < .001, but 
job satisfaction was not, β̂2 = 0.027, z = 0.45, p = 0.66. Notice that the missing data esti-
mates are quite similar to those of the complete data, despite the fact that each predictor 
variable has a missing data rate of 33%. The missing data analysis produced somewhat larger 
standard errors, but this is to be expected. Finally, note that the interpretation of the regres-
sion coeffi cients is the same as it is in a complete-data regression analysis. For example, hold-
ing job satisfaction constant, a one-point increase in psychological well-being yields a .476 
increase in job satisfaction, on average.

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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A Note on Missing Explanatory Variables

Before proceeding to the next analysis example, it is important to note that software packages 
are not uniform in their treatment of missing explanatory variables. Specifi cally, some software 
programs exclude cases that have incomplete data on explanatory variables, while others do 
not. To understand why this is the case, reconsider the log-likelihood formula in Equation 4.2. 

ε
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Well-Being
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Job
Performance

Job
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FIGURE 4.1. A path diagram for the multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable. The top panel of the fi gure shows the manifest 
variable regression model. The bottom panel of the fi gure shows the regression model recast as a latent 
variable model, where the two latent variables have a single manifest indicator. The factor loadings are 
fi xed at values of one, and the residual variances (the doubled-headed curved arrows the manifest vari-
able residual terms to themselves) are constrained to zero.
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The log-likelihood quantifi es the standardized distance between the outcome variables (i.e., 
the Y vector) and the population mean. Depending on the software package and the underly-
ing statistical model, the explanatory variables may not be included in the score vector. For 
example, in a regression analysis, some software platforms specify the explanatory variables 
as part of the population mean vector, such that β0 + β1(X1) + β2(X2) replaces the " term in 
Equation 4.2. In these situations, the software program is likely to exclude the cases with the 
missing explanatory variables. To further complicate matters, a given software program may 
not be consistent in its treatment of missing explanatory variables across different analyses. 
For example, a package might include the incomplete cases in a regression model but exclude 
those data records in more complex models.

Structural equation modeling programs incorporate some fl exibility for dealing with in-
complete explanatory variables. Specifi cally, recasting an incomplete predictor variable as the 
sole manifest indicator of a latent variable effectively tricks the software program into treating 
the explanatory variable as an outcome, while still maintaining the variable’s exogenous sta-
tus in the model. For example, the bottom panel of Figure 4.1 shows the previous regression 
analysis as a latent variable model. In the latent variable specifi cation, the factor loadings are 
constrained to one (this equates the latent variable’s metric to the manifest variable’s metric) 
and the residual variances are constrained to zero (this equates the latent variable’s variance 
to the manifest variable’s variance). Because the latent variables predict the explanatory vari-
ables, the incomplete predictors become part of the Y vector in Equation 4.2. Importantly, 
this programming trick does not change the interpretation of the model parameters (e.g., the 
arrow that connects the latent job satisfaction variable to the job performance variable is still 
a partial regression coeffi cient). Readers interested in more details on single-indicator latent 
variables can consult any number of structural equation modeling textbooks (e.g., see Kline, 
2005, pp. 229–231).

TABLE 4.13. Regression Model Estimates from Data 
Analysis Example 2

Parameter Estimate SE z

Missing data maximum likelihood

β0 (intercept) 6.021 0.053 113.123
β1 (well-being) 0.476 0.055 8.664
β2 (satisfaction) 0.027 0.060 0.445
σ̂2

e (residual) 1.243 0.087 14.356
R2 0.208    

Complete data maximum likelihood

β0 (intercept) 6.021 0.051 117.705
β1 (well-being) 0.446 0.044 10.083
β2 (satisfaction) 0.025 0.046 0.533
σ̂2

e (residual) 1.256 0.081 15.492
R2 0.200    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.



118 APPLIED MISSING DATA ANALYSIS

As an important aside, the single-indicator latent variable approach can have a bearing 
on the likelihood ratio test. As an illustration, reconsider the likelihood ratio test from the 
multiple regression analysis. I specifi ed the restricted model by constraining both regression 
slopes to zero during estimation. Had the data been complete, I could have specifi ed an 
equivalent restricted model by simply excluding the explanatory variables from the analysis. 
However, this approach would not produce a nested model if the manifest explanatory vari-
ables are both indicators of a latent variable, because the two models will have different sets 
of variables that contribute to the Y vector in the log-likelihood equation. Consequently, the 
only correct way to specify a nested model is to constrain parameters from the full model to 
zero. Returning to the latent variable model in the bottom panel of Figure 4.1, note that con-
straining the arrows that connect the latent variables to the job performance variable to zero 
during estimation produces an appropriate nested model, whereas excluding job satisfaction 
and well-being from the model does not.

4.16 DATA ANALYSIS EXAMPLE 3

The third analysis example uses maximum likelihood to estimate a multiple regression model 
with an interaction term. The analysis uses the employee data set from the previous examples 
and involves the regression of job performance on well-being, gender, and the interaction be-
tween well-being and gender. The goal of the analysis is to determine whether gender moder-
ates the association between psychological well-being and job performance. The multiple 
regression equation is as follows:

 JPi = β0 + β1(WBi) + β2(FEMALEi) + β3(WBi)(FEMALEi) + ε

and Figure 4.2 shows the corresponding path diagram of the model. Notice that the inter-
action term (i.e., the product of gender and well-being) simply serves as an additional ex-
planatory variable in the model. Using maximum likelihood to estimate a model with an 
interaction term is straightforward and follows the same procedure as any multiple regres-
sion analysis. I include this example as a point of contrast with multiple imputation. As you 
will see in Chapter 9, multiple imputation requires special procedures to deal with interac-
tive effects such as this. Consistent with the previous analysis example, I used structural 
equation software to estimate the regression model and requested standard errors based on 
the observed information matrix.*

Prior to conducting the analysis, I centered the psychological well-being scores at the 
maximum likelihood estimate of the grand mean from Table 4.12. Next, I created a product 
term by multiplying gender (0 = male, 1 = female) and the centered well-being scores. The 
resulting product term is missing for any case with a missing well-being score. Because males 
have a gender code of zero, their product terms should always equal zero, regardless of 
whether the well-being variable is complete. Consequently, I recoded the missing product 
terms to have a value of zero within the male subsample.

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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Because the previous analysis illustrates the use of the likelihood ratio test, there is no 
need to demonstrate the procedure further. Table 4.14 gives the regression model estimates 
along with those of the corresponding complete-data analysis. The analysis results suggest 
that males and females do not differ with respect to their mean job performance ratings, 
β̂2 = –0.167, z = –1.59, p = .11, but the signifi cant interaction term indicates that the as-
sociation between well-being and performance is different for males and females, β̂3 = 0.362, 
z = 3.43, p < .001. Because the gender variable is coded such that female = 1 and male = 0, 
the sign of the interaction coeffi cient indicates that the relationship is stronger for females. 
Notice that the interpretation of the regression coeffi cients is identical to what it would have 
been had the data been complete. In addition, the computation of simple slopes is identical 
to that of a complete-data analysis. For example, the regression equation for the subsample 
of males (the group coded 0) is ŶM = β̂0 + β̂1(WB), and the corresponding equation for fe-
males (the group coded 1) is ŶF = (β̂0 + β̂2) + (β̂1 + β̂3)(WB). Finally, notice that the missing 
data estimates are quite similar to those of the complete data, but they have larger standard 
errors. The increase in the standard errors is not surprising given that the well-being variable 
and the interaction term have a substantial proportion of missing values.

4.17 DATA ANALYSIS EXAMPLE 4

This section presents a data analysis example that illustrates how to use an EM covariance 
matrix to conduct an exploratory factor analysis and an internal consistency reliability analy-
sis.* The analyses use artifi cial data from a questionnaire on eating disorder risk. Briefl y, the 
data contain the responses from 400 college-aged women on 10 questions from the Eating 
Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a widely used measure of eat-
ing disorder risk. The 10 questions measure two constructs: Drive for Thinness (e.g., “I avoid 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

εJob
PerformanceGender

Well-Being

Gender by
Well-Being

FIGURE 4.2. A path diagram for the multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable.
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eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd myself preoccupied with 
food”), and they mimic the two-factor structure proposed by Doninger, Enders, and Burnett 
(2005). Figure 4.3 shows a graphic of the EAT factor structure and abbreviated descriptions 
of the item stems. The data set also contains an anxiety scale score, a variable that measures 
beliefs about Western standards of beauty (e.g., high scores indicate that respondents inter-
nalize a thin ideal of beauty), and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 
EAT12, EAT18, and EAT24) by deleting the EAT scores f  or a subset of cases in both tails of the 
BMI distribution. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation in which females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

Most software packages use deletion methods to handle missing data in factor analyses 
and reliability analyses. The same software programs can usually accommodate a covariance 
matrix as input data, so you can effectively implement maximum likelihood by estimating the 
mean vector and the covariance matrix (e.g., using the EM algorithm) and using the resulting 
estimates as input data for the analysis. The problem with using an EM covariance matrix 
as input data is that no single value of N is applicable to the entire matrix (Enders & Peugh, 
2004). This poses a problem for standard error computations and requires corrective proce-

TABLE 4.14. Regression Model Estimates from Data 
Analysis Example 3

Parameter Estimate SE z

Missing data maximum likelihood

β0 (intercept) 6.091 0.076 79.755
β1 (well-being) 0.337 0.071 4.723
β2 (gender) –0.167 0.105 –1.587
β3 (interaction) 0.362 0.106 3.426
σ̂2

e (residual) 1.234 0.084 14.650
R2 .214    

Complete data maximum likelihood

β0 (intercept) 6.080 0.075 81.536
β1 (well-being) 0.304 0.057 5.339
β2 (gender) –0.146 0.101 –1.438
β3 (interaction) 0.326 0.082 3.975
σ̂2

e (residual) 1.211 0.078 15.492
R2 .229    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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dures such as bootstrap resampling. However, software programs typically do not report 
standard errors for exploratory factor analyses and reliability analyses. Therefore, specifying 
a sample size is not a concern for the analyses in this section.

Table 4.15 shows the maximum likelihood estimates of the variable means, covariances, 
and correlations for the EAT questionnaire items. Although the factor analysis and the reli-
ability analysis rely only on the 10 questionnaire items, I included all 13 variables in the 
initial EM analysis. Chapter 1 introduced the idea of an inclusive analysis strategy that utilizes 
auxiliary variables that are correlates of missingness or correlates of the analysis variables 
(Collins, Schafer, & Kam, 2001). The three additional variables effectively served as auxiliary 
variables in the initial EM analysis. Excluding these variables from the EM analysis would 
have been detrimental to the accuracy of the parameter estimates because body mass index 
and anxiety scores determine missingness. Adopting an inclusive analysis strategy is nearly 
always benefi cial because it can improve the chances of satisfying the MAR assumption and 
can fi ne-tune the resulting parameter estimates by decreasing bias or increasing power.

I used the correlations in Table 4.15 as input data for an exploratory factor analysis. The 
principal axis factor analysis produced two factors with eigenvalues greater than one, which 

EAT1: Am terrified about being overweight

EAT2: Avoid eating when I’m hungry

EAT10: Feel extremely guilty after eating

EAT11: Desire to be thinner

EAT12: Think about burning calories

EAT14: Am preoccupied with fat on my body

EAT24: Like stomach to be empty

EAT3: Find myself preoccupied with food

EAT18: Feel that food controls my life

EAT21: Give too much thought to food

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

DRIVE

FOODPRE

FIGURE 4.3. A path diagram for the two-factor confi rmatory factor analysis model. The single-headed 
straight lines represent regression coeffi cients, the double-headed curved arrow is a correlation, the 
rectangles are manifest variables, and the ellipses are latent variables.
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suggests the presence of two underlying dimensions. I subsequently used direct oblimin ro-
tation to examine the relationships between the factors and the questionnaire items; Table 
4.16 shows the resulting pattern weights and structure coeffi cients. The structure coeffi -
cients are correlations between the questionnaire items and the factors, whereas the pattern 
weights are partial regression coeffi cients that quantify the infl uence of a factor on an item 
after partialling out the infl uence of the other factor. Both the pattern weights and structure 
coeffi cients suggest a two-factor solution, although the structure coeffi cients are less clear 
owing to the strong correlation between the factors (r = .55). The fi rst factor consists of seven 
questions that measure a construct that the eating disorder literature refers to as Drive for 
Thinness, and the remaining three items form a Food Preoccupation factor. Finally, I used the 
EM correlations as input data for an internal consistency reliability analysis and computed 
the coeffi cient alpha for the two EAT subscales (Enders, 2003, 2004). The coeffi cient alpha 
reliability estimates for the Drive for Thinness and Food Preoccupation subscale scores are 
.893 and .834, respectively.

4.18 DATA ANALYSIS EXAMPLE 5

The fi nal data analysis example illustrates a confi rmatory factor analysis. I used structural 
equation modeling software to fi t the two-factor model in Figure 4.3 to the EAT questionnaire 
data set.* Estimating a confi rmatory factor analysis model with missing data is largely the 
same as it is with complete data, and software packages typically invoke maximum likelihood 
missing data handling with a single additional keyword or line of code. Consistent with the 
previous analyses, I requested standard errors based on the observed information matrix.

Researchers have traditionally used a covariance matrix as input data for structural equa-
tion modeling analyses. A complete data set simplifi es the estimation process because the 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 4.15. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 4

Variable 1 2 3 4 5 6 7 8 9 10

 1: EAT1 1.158 0.508 0.548 0.553 0.512 0.593 0.435 0.362 0.268 0.365
 2: EAT2 0.536 0.960 0.521 0.554 0.479 0.576 0.387 0.288 0.260 0.374
 3: EAT10 0.585 0.506 0.983 0.648 0.539 0.727 0.506 0.430 0.449 0.502
 4: EAT11 0.560 0.511 0.604 0.886 0.569 0.720 0.529 0.352 0.334 0.404
 5: EAT12 0.545 0.465 0.529 0.531 0.981 0.562 0.435 0.255 0.264 0.345
 6: EAT14 0.654 0.578 0.738 0.694 0.570 1.049 0.563 0.439 0.412 0.495
 7: EAT24 0.467 0.378 0.500 0.496 0.430 0.575 0.994 0.190 0.241 0.264
 8: EAT3 0.392 0.285 0.429 0.334 0.254 0.452 0.191 1.014 0.583 0.656
 9: EAT18 0.291 0.257 0.449 0.317 0.264 0.426 0.242 0.593 1.020 0.637
10: EAT21 0.395 0.368 0.500 0.382 0.344 0.510 0.265 0.664 0.647 1.011
Means 4.010 3.940 3.950 3.940 3.930 3.960 3.990 3.970 3.980 3.950

Note. Correlations are shown in the upper diagonal and are in bold typeface.
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sample log-likelihood is less complex and does not require raw data (Kaplan, 2000, pp. 25–
27). The missing data log-likelihood in Equation 4.2 necessitates the use of raw data, adding 
a mean structure that is not usually present in standard structural equation models. The key 
part of the missing data log-likelihood is the collection of terms that form Mahalanobis dis-
tance, (Yi – "i)T !i

–1(Yi – "i). A confi rmatory factor analysis expresses "i as a model-implied 
mean vector that depends on the measurement intercepts, factor loadings, and latent vari-
able means (i.e., " = # + $%, where # is the vector of measurement intercepts, $ is the 
factor loading matrix, and % is the vector of latent variable means). The measurement inter-
cepts and the latent variable means are parameter estimates that you may not be accustomed 
to seeing on a confi rmatory factor analysis printout. These additional parameters are a tech-
nical nuance associated with the missing data handling procedure; they may or may not be 
of substantive interest. However, the mean structure does require its own identifi cation con-
straint, and constraining the latent variable means to zero during estimation is a straight-
forward way to achieve model identifi cation. Consistent with a complete-data analysis, fi xing 
the latent factor variance to unity or setting one of the factor loadings to one identifi es the 
covariance structure portion of the model (Bollen, 1989; Kline, 2005).

Table 4.17 shows the confi rmatory factor analysis parameter estimates along with those 
from a corresponding complete-data analysis. The factor loadings quantify the expected change 
in the questionnaire items for a one-standard-deviation increase in the latent construct, and 
the measurement intercepts are the expected scores for a case that has a value of zero on the 
latent factor (i.e., is at the mean of the latent variable). Because the factor means equal zero, 
the measurement intercepts estimate the item means. A complete-data confi rmatory factor 
analysis model would not ordinarily include the measurement intercepts, but I estimated these 
parameters for comparability.

The two-factor model fi ts the data well according to conventional standards (Hu & 
Bentler, 1998, 1999), χ2(34) = 47.10, p = .07, CFI = 0.993, RMSEA = 0.031, SRMR = 0.029, 
and all of the factor loadings are statistically signifi cant at p < .001. The missing data esti-
mates are quite similar to those of the complete data (the EAT18 loading is a notable exception) 

TABLE 4.16. Factor Analysis Estimates from Data 
Analysis Example 4

 Pattern weights Structure coeffi cients

Variable DT FP  DT FP

EAT1 0.684 0.030 0.701 0.409
EAT2 0.664 0.014 0.671 0.381
EAT10 0.691 0.190 0.796 0.572
EAT11 0.825 –0.008 0.820 0.448
EAT12 0.714 –0.042 0.690 0.353
EAT14 0.803 0.114 0.866 0.558
EAT24 0.686 –0.093 0.634 0.286
EAT3 –0.008 0.785 0.426 0.780
EAT18 –0.010 0.758 0.410 0.753
EAT21 0.061 0.807 0.508 0.841

Note. DT = drive for thinness; FP = food preoccupation.
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but have larger standard errors. It is important to point out that this analysis does not satisfy 
the MAR assumption because the “causes” of missing data (i.e., body mass index and anxi-
ety) do not appear in the model. Collins et al. (2001) show that omitting a cause of missing-
ness tends to be problematic if the correlation between the omitted variable and the analysis 
variables is relatively strong (e.g., r > .40) or if the missing data rate is greater than 25%. The 
body mass index and anxiety variables are not that highly correlated with the EAT question-
naire items, which probably explains why the missing data estimates are similar to those of 
the complete data. Chapter 5 illustrates how to incorporate correlates of missingness into 
a maximum likelihood analysis, and doing so would satisfy the MAR assumption for this 
analysis.

As a fi nal note, the model fi t statistics and the standard errors from this analysis are not 
entirely trustworthy because the data do not satisfy the multivariate normality assumption. 
(The EAT questionnaire items use a discrete Likert-type scale and are a somewhat positively 
skewed and kurtotic.) Methodological studies have repeatedly shown that normality violations 
can distort model fi t statistics and standard errors, with or without missing data (Enders, 
2001; Finney & DiStefano, 2006; West, Finch, & Curran, 1995). The next chapter describes 
corrective techniques that remedy these problems.

TABLE 4.17. Confi rmatory Factor Analysis Estimates from Data Analysis Example 5

 Loadings Intercepts Residuals

Variable Estimate SE Estimate SE Estimate SE

Missing data maximum likelihood

EAT1 0.741 0.050 4.002 0.055 0.602 0.048
EAT2 0.650 0.045 3.934 0.050 0.534 0.042
EAT10 0.807 0.043 3.955 0.050 0.329 0.030
EAT11 0.764 0.040 3.937 0.047 0.300 0.026
EAT12 0.662 0.047 3.926 0.051 0.538 0.043
EAT14 0.901 0.041 3.962 0.051 0.235 0.025
EAT24 0.623 0.048 3.980 0.051 0.597 0.047
EAT3 0.772 0.046 3.967 0.050 0.416 0.041
EAT18 0.749 0.048 3.974 0.052 0.453 0.044
EAT21 0.862 0.045 3.950 0.051 0.262 0.039

Complete data maximum likelihood

EAT1 0.731 0.048 3.995 0.053 0.600 0.046
EAT2 0.638 0.045 3.940 0.049 0.534 0.041
EAT10 0.797 0.042 3.943 0.049 0.344 0.029
EAT11 0.763 0.040 3.938 0.047 0.302 0.026
EAT12 0.692 0.047 3.965 0.051 0.570 0.044
EAT14 0.901 0.041 3.963 0.051 0.235 0.025
EAT24 0.630 0.046 3.995 0.050 0.603 0.045
EAT3 0.780 0.046 3.967 0.050 0.404 0.041
EAT18 0.700 0.047 3.970 0.050 0.494 0.043
EAT21 0.855 0.045 3.953 0.050 0.275 0.039
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4.19 SUMMARY

This chapter describes how maximum likelihood estimation applies to missing data problems. 
The methodological literature regards maximum likelihood estimation as a state-of-the-art 
missing data technique because it yields unbiased parameter estimates with MAR data. From 
a practical standpoint, this means that maximum likelihood will produce accurate parameter 
estimates when traditional approaches fail. Even if the data are MCAR, maximum likelihood 
is still superior to traditional techniques because it maximizes statistical power by borrowing 
information from the observed data. Despite these desirable properties, maximum likelihood 
estimation is not a perfect solution and will yield biased parameter estimates when the data 
are MNAR. However, this bias tends to be isolated to a subset of the analysis model param-
eters, whereas traditional techniques are more apt to propagate bias throughout the entire 
model.

Maximum likelihood estimation repeatedly auditions different combinations of popula-
tion parameter values until it identifi es the particular constellation of values that produce the 
highest log-likelihood value (i.e., the best fi t to the data). Conceptually, the estimation pro-
cess is the same with or without missing data. However, the incomplete data records require 
a slight alteration to the individual log-likelihood equation. The missing data log-likelihood 
does not require each case to have the same number of observed data points, and the com-
putation of the individual log-likelihood uses only the variables and parameters for which a 
case has complete data. Although the log-likelihood formula looks slightly different for each 
missing data pattern, the individual log-likelihood still quantifi es the relative probability that 
an individual’s scores originate from a multivariate normal distribution with a particular 
mean vector and covariance matrix. Consistent with a complete-data analysis, the sample 
log-likelihood is the sum of the individual log-likelihoods, and the goal of estimation is to 
identify the parameter estimates that maximize the sample log-likelihood.

The process of computing maximum likelihood standard errors does not change much 
with missing data, except that it is necessary to distinguish between standard errors that are 
based on the observed information matrix and the expected information matrix. The ex-
pected information matrix replaces certain terms in the second derivative formulas with their 
expected values (i.e., long-run averages), whereas the observed information uses the realized 
data values to compute these terms. This is an important distinction because the expected 
information matrix yields standard errors that require the MCAR assumption, whereas the 
observed information matrix gives standard errors that are appropriate with MAR data. Be-
cause they make less stringent assumptions, the missing data literature clearly favors stan-
dard errors based on the observed information matrix.

With few exceptions, missing data analyses require iterative optimization algorithms, 
even for very simple estimation problems. This chapter described one such algorithm that 
is particularly important for missing data analyses, the EM algorithm. The EM algorithm is a 
two-step iterative procedure that consists of an E-step and an M-step. The E-step uses the 
elements from the mean vector and the covariance matrix to derive regression equations that 
predict the incomplete variables from the complete variables, and the M-step subsequently 
uses standard complete-data formulas to generate updated estimates of the mean vector and 
the covariance matrix. The algorithm carries these updated parameter values forward to the 
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next E-step, where the process begins anew. EM repeats these two steps until the elements in 
the mean vector and the covariance matrix no longer change between consecutive M-steps, 
at which point the algorithm has converged on the maximum likelihood estimates.

With the basic principles of maximum likelihood estimation established in this chapter, 
the next chapter describes procedures useful for fi ne-tuning a maximum likelihood analysis. 
Specifi cally, the chapter outlines auxiliary variable models that incorporate correlates of 
missingness into a maximum likelihood analysis. Adopting this so-called inclusive analysis 
strategy can decrease bias, increase power, and improve the chances of satisfying the MAR as-
sumption. The chapter also outlines corrective procedures that remedy the negative effects of 
nonnormal data.
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